
Import Linter Documentation
Release 1.0b2

David Seddon

Jul 03, 2019

Contents

1 Import Linter 1
1.1 Overview . 1
1.2 Quick start . 2

2 Installation 3

3 Usage 5
3.1 Configuration file location . 5
3.2 Top level configuration . 5
3.3 Contracts . 6
3.4 Running the linter . 6

4 Contract types 7
4.1 Independence . 7
4.2 Layers . 7
4.3 Custom contract types . 9

5 Custom contract types 11
5.1 Step one: implementing a Contract class . 11
5.2 Step two: register the contract type . 12
5.3 Step three: define your contracts . 13

6 Contributing 15
6.1 Bug reports . 15
6.2 Documentation improvements . 15
6.3 Feature requests and feedback . 15
6.4 Development . 16

7 Authors 17

8 Changelog 19
8.1 1.0a1 (2019-1-27) . 19
8.2 1.0a2 (2019-3-26) . 19
8.3 1.0a3 (2019-3-27) . 19
8.4 1.0b1 (2019-4-6) . 19
8.5 1.0b2 (2019-4-16) . 19

9 Indices and tables 21

i

ii

CHAPTER 1

Import Linter

Import Linter allows you to define and enforce rules for the internal and external imports within your Python project.

• Free software: BSD license

• Documentation: https://import-linter.readthedocs.io.

Warning: This software is currently in beta. It is undergoing active development, and breaking changes may be
introduced between versions. However, due to it being a development tool (rather than something that needs to be
installed on a production system), it may be suitable for inclusion in your testing pipeline. It also means we actively
encourage people to try it out and submit bug reports.

1.1 Overview

Import Linter is a command line tool to check that you are following a self-imposed architecture within your Python
project. It does this by analysing the imports between all the modules in a Python package, and compares this against
a set of rules that you provide in a configuration file.

The configuration file contains one or more ‘contracts’. Each contract has a specific type, which determines the sort
of rules it will apply. For example, the independence contract type checks that there are no imports, in either
direction, between a set of subpackages.

Import Linter is particularly useful if you are working on a complex codebase within a team, when you want to enforce
a particular architectural style. In this case you can add Import Linter to your deployment pipeline, so that any code
that does not follow the architecture will fail tests.

If there isn’t a built in contract type that fits your desired architecture, you can define a custom one.

1

https://pypi.org/project/import-linter
https://pypi.org/project/import-linter/
https://travis-ci.org/seddonym/import-linter
https://import-linter.readthedocs.io
https://import-linter.readthedocs.io/en/latest/contributing.html#bug-reports

Import Linter Documentation, Release 1.0b2

1.2 Quick start

Install Import Linter:

pip install import-linter

Decide on the dependency flows you wish to check. In this example, we have decided to make sure that there are
no dependencies between myproject.foo and myproject.bar, so we will use the independence contract
type.

Create an .importlinter file in the root of your project. For example:

[importlinter]
root_package = myproject

[importlinter:contract:1]
name=Foo and bar are decoupled
type=independence
modules=

myproject.foo
myproject.bar

Now, from your project root, run:

lint-imports

If your code violates the contract, you will see an error message something like this:

=============
Import Linter
=============

Contracts

Analyzed 23 files, 44 dependencies.

Foo and bar are decoupled BROKEN

Contracts: 1 broken.

Broken contracts

Foo and bar are decoupled

myproject.foo is not allowed to import myproject.bar:

- myproject.foo.blue -> myproject.utils.red (l.16)
myproject.utils.red -> myproject.utils.green (l.1)
myproject.utils.green -> myproject.bar.yellow (l.3)

For more details, see Usage.

2 Chapter 1. Import Linter

CHAPTER 2

Installation

At the command line:

pip install import-linter

3

Import Linter Documentation, Release 1.0b2

4 Chapter 2. Installation

CHAPTER 3

Usage

3.1 Configuration file location

Before running the linter, you need to supply configuration in a file, in INI format. Import Linter will look in the
current directory for one of the following files:

• setup.cfg

• .importlinter

(Different filenames / locations can be specified as a command line argument, see below.)

3.2 Top level configuration

Your file must contain an importlinter section providing top-level (i.e. non-contract based) configuration:

[importlinter]
Required:
root_package = mypackage
Optional:
include_external_packages = True

Options:

• root_package: The name of the top-level Python package to validate. This package must be importable:
usually this means it is has been installed using pip, or it’s in the current directory. (Required.)

• include_external_packages: Whether to include external packages when building the import graph
(see the Grimp build_graph documentation for more details). This is not currently used by any built in contracts,
but it could be used by a custom contract type that wanted to enforce rules relating to packages not in the root
package (i.e. in the Python standard library, or in third party libraries). (Optional.)

5

https://grimp.readthedocs.io/en/latest/usage.html#grimp.build_graph

Import Linter Documentation, Release 1.0b2

3.3 Contracts

Additionally, you will want to include one or more contract configurations. These take the following form:

[importlinter:contract:1]
name = Contract One
type = some_contract_type
(additional options)

[importlinter:contract:2]
name = Contract Two
type = another_contract_type
(additional options)

Notice each contract has its own INI section, which begins importlinter:contract: and ends in an arbitrary,
unique code (in this example, the codes are 1 and 2). These codes are purely to adhere to the INI format, which does
not allow duplicate section names.

Every contract will always have the following key/value pairs:

• name: A human-readable name for the contract.

• type: The type of contract to use (see Contract types.)

Each contract type defines additional options that you supply here.

3.4 Running the linter

Import Linter provides a single command: lint-imports.

Running this will check that your project adheres to the contracts you’ve defined.

Arguments:

• --config: The configuration file to use. If not supplied, Import Linter will look for setup.cfg or .
importlinter in the current directory. (Optional.)

Default usage:

lint-imports

Using a different filename or location:

lint-imports --config path/to/alternative-config.ini

6 Chapter 3. Usage

CHAPTER 4

Contract types

4.1 Independence

Type name: independence

Independence contracts check that a set of modules do not depend on each other.

They do this by checking that there are no imports in any direction between the modules, even indirectly.

Example:

[importlinter:contract:1]
name = My independence contract
type = independence
modules =

mypackage.foo
mypackage.bar
mypackage.baz

ignore_imports =
mypackage.bar.green -> mypackage.utils
mypackage.baz.blue -> mypackage.foo.purple

Configuration options

• modules: A list of modules/subpackages that should be independent from each other.

• ignore_imports: A list of imports, each in the form mypackage.foo.importer -> mypackage.
bar.imported. These imports will be ignored: if the import would cause a contract to be broken, adding it
to the list will cause the contract be kept instead. (Optional.)

4.2 Layers

Type name: layers

7

Import Linter Documentation, Release 1.0b2

Layers contracts enforce a ‘layered architecture’, where higher layers may depend on lower layers, but not the other
way around.

They do this by checking, for an ordered list of modules, that none higher up the list imports anything from a module
lower down the list, even indirectly. To allow for a repeated pattern of layers across a project, you also define a set of
‘containers’, which are treated as the parent package of the layers.

Layers are required by default: if a layer is listed in the contract, the contract will be broken if the layer doesn’t exist.
You can make a layer optional by wrapping it in parentheses.

Examples

[importlinter:contract:1]
name = My three-tier layers contract
type = layers
layers=

high
medium
low

containers=
mypackage

This contract will not allow imports from lower layers to higher layers. For example, it will not allow mypackage.
low to import mypackage.high, even indirectly.

[importlinter:contract:1]
name = My multiple package layers contract
type = layers
layers=

high
(medium)
low

containers=
mypackage.foo
mypackage.bar
mypackage.baz

In this example, each container has its own layered architecture. For example, it will not allow mypackage.foo.
low to import mypackage.foo.high. However, it will allow mypackage.foo.low to import mypackage.
bar.high, as they are in different containers:

Notice that medium is an optional layer. This means that if it is missing from any of the containers, Import Linter
won’t complain.

Configuration options

• layers: An ordered list with the name of each layer module, relative to its parent package. The order is from
higher to lower level layers.

• containers: List of the parent modules of the layers, as absolute names that you could import, such as
mypackage.foo. If you only have one set of layers, there will only be one container.

• ignore_imports: A list of imports, each in the form mypackage.foo.importer -> mypackage.
bar.imported. These imports will be ignored: if the import would cause a contract to be broken, adding it
to the list will cause the contract be kept instead. (Optional.)

8 Chapter 4. Contract types

Import Linter Documentation, Release 1.0b2

4.3 Custom contract types

If none of the built in contract types meets your needs, you can define a custom contract type: see Custom contract
types.

4.3. Custom contract types 9

Import Linter Documentation, Release 1.0b2

10 Chapter 4. Contract types

CHAPTER 5

Custom contract types

If none of the built in contract types serve your needs, you can define a custom contract type. The steps to do this are:

1. Somewhere in your Python path, create a module that implements a Contract class for your supplied type.

2. Register the contract type in your configuration file.

3. Define one or more contracts of your custom type, also in your configuration file.

5.1 Step one: implementing a Contract class

You define a custom contract type by subclassing importlinter.Contract and implementing the following
methods:

• check(graph): Given an import graph of your project, return a ContractCheck describing whether the
contract was adhered to.

Arguments:

– graph: a Grimp ImportGraph of your project, which can be used to inspect / analyse any
dependencies. For full details of how to use this, see the Grimp documentation.

Returns:

– An importlinter.ContractCheck instance. This is a simple dataclass with two at-
tributes, kept (a boolean indicating if the contract was kept) and metadata (a dictionary of
data about the check). The metadata can contain anything you want, as it is only used in the
render_broken_contract method that you also define in this class.

• render_broken_contract(check):

Renders the results of a broken contract check. For output, this should use the importlinter.
output module.

Arguments:

– check: the ContractCheck instance returned by the check method above.

11

https://grimp.readthedocs.io

Import Linter Documentation, Release 1.0b2

Contract fields

A contract will usually need some further configuration. This can be done using fields. For an example, see
importlinter.contracts.layers.

Example custom contract

from importlinter import Contract, ContractCheck, fields, output

class ForbiddenImportContract(Contract):
"""
Contract that defines a single forbidden import between
two modules.
"""
importer = fields.StringField()
imported = fields.StringField()

def check(self, graph):
forbidden_import_details = graph.get_import_details(

importer=self.importer,
imported=self.imported,

)
import_exists = bool(forbidden_import_details)

return ContractCheck(
kept=not import_exists,
metadata={

'forbidden_import_details': forbidden_import_details,
}

)

def render_broken_contract(self, check):
output.print_error(

f'{self.importer} is not allowed to import {self.imported}:',
bold=True,

)
output.new_line()
for details in check.metadata['forbidden_import_details']:

line_number = details['line_number']
line_contents = details['line_contents']
output.indent_cursor()
output.print_error(f'{self.importer}:{line_number}: {line_contents}')

5.2 Step two: register the contract type

In the [importlinter] section of your configuration file, include a list of contract_types that map type
names onto the Python path of your custom class:

[importlinter]
root_package_name = mypackage
contract_types =

forbidden_import: somepackage.contracts.ForbiddenImportContract

12 Chapter 5. Custom contract types

Import Linter Documentation, Release 1.0b2

5.3 Step three: define your contracts

You may now use the type name defined in the previous step to define a contract:

[importlinter:contract:1]
name = My custom contract
type = forbidden_import
importer = mypackage.foo
imported = mypackage.bar

5.3. Step three: define your contracts 13

Import Linter Documentation, Release 1.0b2

14 Chapter 5. Custom contract types

CHAPTER 6

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

6.1 Bug reports

When reporting a bug please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

6.2 Documentation improvements

Nameless could always use more documentation, whether as part of the official Nameless docs, in docstrings, or even
on the web in blog posts, articles, and such.

6.3 Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/seddonym/import-linter/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that code contributions are welcome :)

15

https://github.com/seddonym/import-linter/issues
https://github.com/seddonym/import-linter/issues

Import Linter Documentation, Release 1.0b2

6.4 Development

To set up import-linter for local development:

1. Fork import-linter (look for the “Fork” button).

2. Clone your fork locally:

git clone git@github.com:your_name_here/import-linter.git

3. Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

4. When you’re done making changes, run all the checks, doc builder and spell checker with tox one command:

tox

5. Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

6. Submit a pull request through the GitHub website.

6.4.1 Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:

1. Include passing tests (run tox)1.

2. Update documentation when there’s new API, functionality etc.

3. Add a note to CHANGELOG.rst about the changes.

4. Add yourself to AUTHORS.rst.

6.4.2 Tips

To run a subset of tests:

tox -e envname -- pytest -k test_myfeature

To run all the test environments in parallel (you need to pip install detox):

detox

1 If you don’t have all the necessary python versions available locally you can rely on Travis - it will run the tests for each change you add in the
pull request.

It will be slower though . . .

16 Chapter 6. Contributing

https://github.com/seddonym/import-linter
https://tox.readthedocs.io/en/latest/install.html
https://travis-ci.org/seddonym/import-linter/pull_requests

CHAPTER 7

Authors

• David Seddon - http://seddonym.me

17

http://seddonym.me

Import Linter Documentation, Release 1.0b2

18 Chapter 7. Authors

CHAPTER 8

Changelog

8.1 1.0a1 (2019-1-27)

• Release blank project on PyPI.

8.2 1.0a2 (2019-3-26)

• First usable alpha release.

8.3 1.0a3 (2019-3-27)

• Include the ability to build the graph with external packages.

8.4 1.0b1 (2019-4-6)

• Improve error handling of modules/containers not in the graph.

• Return the exit code correctly.

• Run lint-imports on Import Linter itself.

• Allow single values in ListField.

8.5 1.0b2 (2019-4-16)

• Update to Grimp v1.0b9, fixing error with using importlib.util.find_spec.

19

Import Linter Documentation, Release 1.0b2

20 Chapter 8. Changelog

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

21

	Import Linter
	Overview
	Quick start

	Installation
	Usage
	Configuration file location
	Top level configuration
	Contracts
	Running the linter

	Contract types
	Independence
	Layers
	Custom contract types

	Custom contract types
	Step one: implementing a Contract class
	Step two: register the contract type
	Step three: define your contracts

	Contributing
	Bug reports
	Documentation improvements
	Feature requests and feedback
	Development

	Authors
	Changelog
	1.0a1 (2019-1-27)
	1.0a2 (2019-3-26)
	1.0a3 (2019-3-27)
	1.0b1 (2019-4-6)
	1.0b2 (2019-4-16)

	Indices and tables

